Fulton 2.8

Posted on November 15, 2017

2.39.* Prove the following relations among ideals I_i, J in a ring R:

(a) (I_1+I_2)J=I_1J+I_2J.

Suppose x=(i_1+i_2)j\in (I_1+I_2)J. Then x=i_1j+i_2j\in I_1J+I_2J. Suppose x=i_1j_1+i_2j_2\in I_1J+I_2J. Then i_1j_1,i_2j_2\in (I_1+I_2)J and thus x\in (I_1+I_2)J. So (I_1+I_2)J=I_1J+I_2J.

(b) (I_1\ldots I_N)^n=I_1^n\ldots I_N^n.

Observe that (a_1\ldots a_N)^n=a_1^n\ldots a_N^n where a_k\in I_k. Thus (I_1\ldots I_N)^n=I_1^n\ldots I_N^n.

2.40.* (a) Suppose I,J are comaximal ideals in R. Show that I+J^2=R. Show that I^m and J^n are comaximal for all m,n.

Let a\in I, b\in J such that a+b=1. Then ab\in I, b^2\in J^2 and ab+b^2=b. Thus a,b\in I+J^2 and therefore 1\in I+J^2.

By induction, the above implies that I^m and J^n are comaximal for all m,n.

(b) Suppose I_1,\ldots,I_N are ideals in R, and I_i and J_i=\cap_{j\ne i}I_j are comaximal for all i. Show that I_1^n\cap\ldots\cap I_N^n=(I_1\ldots I_N)^n= (I_1\cap\ldots\cap I_N)^n for all n.

This follows from part (a) and the fact that I\cap J=IJ when I,J are comaximal.

2.41.* Let I,J be ideals in R. Suppose I is finitely generated and I\subset\text{Rad}(J). Show that I^n\subset J for some n.

Let I=(a_1,\ldots,a_N). Since I\subset\text{Rad}(J) for each i, a_i^{n_i}\in J for some n_i\ge 1. If we take n=N\cdot\max\left\{ n_i \, | \, 1\le i\le N \right\} then, by the multinomial theorem and pigeon hole principle, I^n=((a_1)+\ldots+(a_N))^n\subset (a_1)^{n_1}+\ldots+(a_N)^{n_N}\subset J.

2.42.* (a) Let I\subset J be ideals in a ring R. Show that there is a natural ring homomorphism from R/I onto R/J.

This follows from applying Lemma 1.1 to the natural maps R\to R/I, R\to R/J.

(b) Let I be an ideal in a ring R, R a subring of a ring S. Show that there is a natural ring homomorphism from R/I to S/IS.

Define \varphi:R\to S/IS by r\mapsto r+IS. Note that this is a well defined homomorphism since I\subset IS. Moreover, \varphi(I)=\{0+IS\}\subset S/IS. Thus we may apply Lemma 1.1 to the natural map R\to R/I and the map \varphi:R\to S/IS and yield the desired result.

2.43.* Let P=(0,\ldots,0)\in\mathbb{A}^n, \mathcal{O}=\mathcal{O}_{P}(\mathbb{A}^n), \mathfrak{m}=\mathfrak{m}_{P}(\mathbb{A}^n). Let I\subset k[X_1,\ldots,X_n] be the ideal generated by X_1,\ldots,X_n. Show that I\mathcal{O}=\mathfrak{m}, so I^r\mathcal{O}=\mathfrak{m}^r for all r.

Observe that if f=F/G\in\mathcal{O}, then f\in\mathfrak{m}, that is f(P)=0, if and only if F(P)=0. Moreover, F(P)=0 if and only if F\in I(P)=I. So \mathfrak{m}=I\mathcal{O}.

2.44.* Let V be a variety in \mathbb{A}^n, I=I(V)\subset k[X_1,\ldots,X_n], P\in V, and let J be an ideal of k[X_1,\ldots,X_n] that contains I. Let J&39; be the image of J in \Gamma(V). Show that there is a homomoprhism \varphi from \mathcal{O}_{P}(\mathbb{A}^n)/J\mathcal{O}_{P}(\mathbb{A}^n) to \mathcal{O}_{P}(V)/J&39;\mathcal{O}_{P}(V), and that \varphi is an isomorphism. In particular, \mathcal{O}_{P}(\mathbb{A}^n)/I\mathcal{O}_{P}(\mathbb{A}^n) is isomorphic to \mathcal{O}_{P}(V).

Observe that by Lemma 2.13 the homomorphism \varphi:\Gamma(\mathbb{A}^n)\to\Gamma(V) extends naturally to a homomorphism \varphi&39;:\mathcal{O}_{P}(\mathbb{A}^n)\to\mathcal{O}_{P}(V). Moreover, note that J&39;=\varphi(J), thus \varphi&39;(J\mathcal{O}_{P}(\mathbb{A}^n))=J&39;\mathcal{O}_{P}(V). Let \pi:\mathcal{O}_{P}(\mathbb{A}^n)\to J\mathcal{O}_{P}(\mathbb{A}^n) and \pi_V:\mathcal{O}_{P}(V)\to \mathcal{O}_{P}(V)/J&39;\mathcal{O}_{P}(V) be the natural homomorphisms.  \xymatrix{     \mathcal{O}_{P}(\mathbb{A}^n) \ar[r]^{\varphi&39;} \ar[d]^{\pi}     & \mathcal{O}_{P}(V) \ar[d]^{\pi_V}\\     \mathcal{O}_{P}(\mathbb{A}^n)/J\mathcal{O}_{P}(\mathbb{A}^n) \ar[r]     & \mathcal{O}_{P}(V)/J&39;\mathcal{O}_{P}(V) } Observe that \ker\pi=J\mathcal{O}_{P}(\mathbb{A}^n)=\varphi&39;^{-1}(J&39;\mathcal{O}_{P}(V))=\ker\pi_V\circ\varphi&39;. Thus by Lemma 1.1, the homomorphism \pi_V\circ\varphi&39; induces an isomorphism \mathcal{O}_{P}(\mathbb{A}^n)/J\mathcal{O}_{P}(\mathbb{A}^n)\to\mathcal{O}_{P}(V)/J&39;\mathcal{O}_{P}(V).

2.45.* Show that ideals I,J\subset k[X_1,\ldots,X_n] (k algebraically closed) are comaximal if and only if V(I)\cap V(J)=\emptyset.

Note that V(I)\cap V(J)=V(I+J). By the weak Nullstellensatz, V(I+J)=\emptyset if and only if I+J=k[X_1,\ldots,X_n]. Thus I+J are comaximal if and only if V(I)\cap V(J)=\emptyset.

2.46.* Let I=(X,Y)\subset k[X,Y]. Show that \dim_k(k[X,Y]/I^n)= 1+2+\ldots+n=\frac{n(n+1)}{2}.

Observe that the residues of monomials of degree d<n span k[X,Y]/I^n and are linearly independent over k. By Problem 2.35(a) there are d+1 monomials of degree d. Therefore k[X,Y]/I^n is of dimension 1+2+\ldots+n=\frac{n(n+1)}{2}.