Implementing algorithms for path 3-coloring and
path 3-list-coloring plane graphs

Final Talk

Aven Bross

February 28, 2017

Committee

» Dr. Chappell (Chair)
» Dr. Lawlor

» Dr. Hartman

Project goal

Produce a nice, documented implementation of two previously
unimplemented algorithms for coloring planar graphs.

Overview

Plane graphs

Graphs

A graph consists of:

1. a set of objects called vertices;

3 2
o o
6 5
() ()

Graphs

A graph consists of:
1. a set of objects called vertices;
2. a set of edges between pairs of vertices.

3 2 1
®

Simple graphs

All graphs in this talk will be simple graphs which have no loops
or parallel edges.

D o

A loop (left) and two parallel edges (right).

Plane graphs

We are interested in planar graphs which are graphs that may be
drawn in the plane without crossing edges. A planar graph along
with a particular drawing is called a plane graph.

The nonplanar graph Ks, and the planar graph Ks.

Faces

A face of a plane graph is a maximal region of the plane not
containing any edges or vertices.

Faces

We will refer to a face by the subgraph of vertices and edges lying
on its border.

Faces

The unbounded region is also a face, known
face.

as the outer

DA

Triangulation

A graph is triangulated if all of its faces are triangles. If a graph
has a single nontriangle face we say it is weakly
triangulated.

A triangulated graph and a weakly triangulated graph.

Rotation schemes

A plane graph naturally provides a cyclic ordering of the edges
around each vertex, called a rotation scheme. In fact, the
rotation scheme tells us everything we need to know about the
plane graph.

N
[)
\ J

Induced subgraphs

Given a subset S of vertices of a graph G, the induced subgraph
of S consists of all edges in G between vertices in S.

2
@

Induced subgraphs

Given a subset S of vertices of a graph G, the induced subgraph
of S consists of all edges in G between vertices in S.

-
4
.
-

”»
L4
-

Induced subgraphs

Given a subset S of vertices of a graph G, the induced subgraph
of S consists of all edges in G between vertices in S.

Paths

A path is a sequence of distinct vertices with edges between
consecutive vertices.

A cycle consists of a path and an edge between the first and last
vertex.

A length 4 path, and a 6-cycle.

Coloring

A (vertex) coloring of a graph assigns a color to each vertex. A
k-coloring is a coloring that uses at most k colors.

Two different colorings.

Coloring

The set of all vertices of a particular color is called a color
class.

The color class of red in each graph.

Path coloring

A path coloring is a coloring such that each color class induces a
collection of disjoint paths.

A path 3-coloring and a 2-coloring that is not a path coloring.

Poh

Theorem (Poh, 1990)
All planar graphs admit a path 3-coloring.

In his proof Poh described a constructive procedure to produce
such a coloring. We will describe an efficient implementation of
Poh'’s algorithm.

Overview

Graph representations

Representing graphs

In order to work with graphs on computers we require an efficient
data structure to represent a graph.

Suppose G is a graph with n vertices and m edges. We will assume
the vertices of G are the integers 1,2,...,n.

The input size will always be the number of vertices n. However,
for plane graphs O(m) = O(n), so it is equivalent to take the
input size to be the number of edges.

Adjacency lists

For each vertex we define a linked list known as an adjacency list
containing its neighbors. The full graph is then represented by a
size n array Adj such that each vertex v has adjacency list

Adj[v].

2 1 Adj[l] =2 — 3
Adj2] =1 —3
Adj[3]=1—4—2
1 3 Adj[4] = 3

Adjacency lists

Adjacency list representations may simultaneously store a rotation
scheme for a plane graph by ordering the neighbors in each
list.

2 1 Adj[l] =2 — 3
Adj[2l =1—3
Adj[3]=1—4—2
4 3 Adj[4] = 3

Triangulations

Given an arbitrary planar graph with an adjacency list
representation, linear time algorithms exist to embed it in the
plane, i.e. order it's adjacency lists such that they correspond to a
drawing of the graph with no edge crossings.

Moreover, given a plane graph, linear time algorithms exist to add
edges until the graph is triangulated.

Vertex properties

Idea

We often wish to track various properties about the vertices of a
graph, such as what color they have received, or whether they are

in a particular subgraph.

Vertex properties

Idea

We often wish to track various properties about the vertices of a
graph, such as what color they have received, or whether they are
in a particular subgraph.

Implementation

Properties will be represented by constructing a size n array
indexed by vertices. Thus accessing a vertex property will be a
basic operation.

Vertex properties

Idea

We often wish to track various properties about the vertices of a
graph, such as what color they have received, or whether they are
in a particular subgraph.

Implementation

Properties will be represented by constructing a size n array
indexed by vertices. Thus accessing a vertex property will be a
basic operation.

Example

An adjacency list is a vertex property.

Vertex marking

We will often use an integer vertex property called a mark.

To represent a path or cycle we mark all vertices on the path or
cycle with a unique integer identifying the path.

To perform a breadth first search we mark vertices that have
already been visited.

Cycles and plane graphs

Given a cycle in a plane graph we are guaranteed no interior
vertices are connected with exterior vertices. Therefore by marking
a cycle in our graph we simultaneously represent a subgraph.

A cycle in a triangulated graph.

Overview

Path 3-coloring plane graphs

Poh's algorithm

Input: A weakly triangulated plane graph G such that it's outer
face is a cycle C, and a 2-coloring of C such that each color class
induces a path, denoted P and @ respectively.

Output: An extension of the 2-coloring of C to a path 3-coloring
of G such that no vertex in C receives a same color neighbor in
G-C.

Poh's algorithm

Case (1)

If there exists an edge between P and @ that is not in C we may
apply Poh's algorithm to separately path 3-color the interior of the
cycles C; and G, seen below.

PR -
" ~§
* -
S
,
5~ ’
~ Phd

Poh's algorithm

Case (2)

If no such edge exists and there are vertices left to color then we
find the shortest path T through the interior. We may then color
T with the remaining color and apply Poh's algorithm to separately
color the interior of the cycles C; and C, seen below.

-
" ~~
. .
. .
1 [y
--7.-..
C)
. 2 .
. .
~ L4

Procedure to path 3-color a planar graph

Given an arbitrary plane graph we may add edges until it is
triangulated.

By path 2-coloring the outer triangle of the triangulated graph we
may then apply Poh's algorithm to produce a path
3-coloring.

The resulting coloring is also a 3-coloring of the original graph,
with the additional “triangulation edges” removed.

Implementing Poh's algorithm

Input: A triangulated graph, and the first and last vertex of two
marked paths P = pip>...px and Q = g1g2 ... q; that satisfy the
requirements of Poh's algorithm.

Output: A path 3-coloring of the interior of the cycle formed by P
and @ such that none of the vertices in P or @ receive a new same
color neighbor.

Implementing Poh's algorithm

We begin by locating g1 in Adj[p1]. Let u be the vertex clockwise
from gy in Adj[p1]. Note the cycle p1giu is a triangle face.

If uisin P we apply the algorithm to P — p; and Q. Similarly, if u
is in @ we apply the algorithm to P and Q — ¢1.

P1 s Pk

Implementing Poh's algorithm

Otherwise, u is an interior vertex. Perform a breadth first search
from u through the interior vertices until we find a vertex v with a
neighbor in @ immediately clockwise from a neighbor in P. We
may then backtrack along the search to color the path T.

Pi
1 ¢"‘—) S k
2% p . P
u 174
T
g .. @ -7 g

-
Semmm="

qj

Implementing Poh's algorithm

S
U-I..V p
u TV Q_
' Y q
0 .

~ -

Poh coloring example

P2 P3

q2

Poh coloring example

(¢p)

Poh coloring example

P2 P3

P4

q2

Poh coloring example

P2 P3

P4

q2

Poh coloring example

P2 P3
P3
P4
u v
u 74
a3
q1 q>

a

Poh time complexity

Poh's algorithm potentially performs a breadth first in each call.
Unfortunately this results in a worst case running time that is not
linear.

However, another way to find an induced path through the cycle is
walking along the inside one of the paths P or Q. Using this
method produces a similar algorithm that runs in linear time.

Overview

Path 3-list-coloring plane graphs

Path 3-list-coloring

Suppose L maps each vertex of a graph G to a list of colors. Then
a path list-coloring of G from L is a path coloring such that each
vertex v receives a color from L(v).

Theorem (Hartman, 1997)

All planar graphs admit a path list coloring if each vertex is
assigned a list of at least 3 colors.

The proof provides a constructive algorithm to produce a such a
coloring.

Independently, around the same time Skrekovski proved a slightly
weaker result using the same coloring procedure.

We will describe Hartman and Skrekovski’'s coloring algorithm, and
then describe how it may be implemented in linear time.

Hartman-Skrekovski list-coloring

Input: A weakly triangulated plane graph G whose outer face is a
cycle C, and a pair of vertices x, y in C. Also, a list assignment L
such that x, y receive at least 1 color, other vertices in C receive at
least 2 colors, and interior vertices receive at least 3 colors.

Output: A path list-coloring of G from L.

Hartman-Skrekovski list-coloring

3 Y g

{1,2} {1,2}

{1} x {1,4}

{13} {2}y {34}

Hartman-Skrekovski list-coloring

Select a color ¢ from L(x). We will now color an induced path
with ¢ as far as possible clockwise along C towards y.

Procedure:
Initialize the path P to contain the single vertex x.

Let v be the last vertex of P. Let u be the furthest vertex
clockwise from v along C such that

1. v is adjacent to v;
2. u lies between v and y clockwise along C;
3. ce L(u).

If such a u exists, append u to P and repeat. Otherwise, we are
done.

Hartman-Skrekovski list-coloring

Hartman-Skrekovski list-coloring

3 L4

Hartman-Skrekovski list-coloring

{D,3} (@4 {1,3}

Hartman-Skrekovski list-coloring

Hartman-Skrekovski list-coloring

{®,3} e (1,3}

{1,2} /' {1,2}

{D} x {D, 4}

{173} {2} y {374}

Hartman-Skrekovski list-coloring

If an edge uv of the path P is not an edge of C we will then
separately consider the two subgraphs formed by dividing along uv.
The section not containing x and y will be called a lobe.

We now have several weakly triangulated subgraphs, each with a
path colored c along their outer cycle.

Hartman-Skrekovski list-coloring

Hartman-Skrekovski list-coloring

We will now proceed to remove the colored path P and update the
color lists of the remaining vertices so vertices with neighbors in P
will be colored c.

What remains will be several subgraphs with list assignments such
that we may separately apply the algorithm to color each.

We will now remove the colored path P. Also, for all vertices v
adjacent to a vertex in P we will remove ¢ from L(v).

Hartman-Skrekovski list-coloring

(@.3) {D1, 4}

/7

{D} x {D, 4}

{173} {2} y {374}

Hartman-Skrekovski list-coloring

{2,3}

{3} o, B34

Hartman-Skrekovski list-coloring

The key idea that makes this work is that a vertex only ends up
with one remaining color in its list when it is in a position to be
made x or y in the recursive call.

Implementing Hartman-Skrekovski

There are two main challenges faced in implementing Hartman and
Skrekovski's algorithm:

1. removing paths and locating remaining components;

2. tracking where vertices are on the outer face.

Implementing Hartman-Skrekovski

Problem

We must remove a path and locate all the remaining subgraphs in
order to make recursive calls.

Idea

We remove the path one vertex at a time and immediately make
any recursive calls as they become available.

Implementing Hartman-Skrekovski

Suppose we are at the point in the algorithm where we have a
cycle C = viva ... vk, and a colored path along the cycle.

Suppose vy is a path vertex we wish to remove. We will iterate

through its neighbors counterclockwise, starting with the neighbor
vk and ending with the neighbor vs.

Vi
Vi %)
Y3 ~ ~ - L d
' St emmm=" - “
'

h '
M 1
1 1
\ i

1y N
* '
.

Implementing Hartman-Skrekovski

At each neighbor we will remove the given color from their list if
necessary.

If a neighbor is an interior vertex we will update vertex properties
to note that it is now on the outer face.

Vi

Implementing Hartman-Skrekovski

If we hit a neighbor v; on the outer face, observe v; has been
completely removed from C; then we make the recursive call on
the cycle C;. Since v; has been completely removed from C; we
will continue the process of removing v; from the cycle G,.

Implementing Hartman-Skrekovski

Problem

We must track where all vertices on the outer face are in relation
to x, y, and the path P.

Idea

We mark vertices along the outer cycle to denote which “region”
they are in.

Implementing Hartman-Skrekovski

When the path has been entirely removed the segments s, and s,
are no longer separated by the colored path P.

Moreover, we are about to start coloring a new path along the
outer face and must treat s, as a part of s, that is, the segment
between x and y clockwise along the outer face.

Walking along and remarking vertices is slow. Instead, we use a
disjoint set (or union find) structure to store the segment marks.
Then, as two segments are merged we may simply perform a union
so both marks are treated the same.

Hartman-Skrekovski time complexity

These techniques combine into an algorithm where we walk
through the adjacency list of each vertex a fixed number of times,
and perform a fixed number of operations per neighbor.

Therefore the resulting implementation is O(n).

Boost

For the deliverable implementation | chose to use the C++ Boost
Graph Library:

1. Boost is well maintained and kept up to date with the C++
standard;

2. the Boost Graph Library is designed for the implementation of
graph algorithms;

3. Boost implements all the standard algorithms for embedding,
drawing, and triangulating planar graphs.

Deliverables

Documented implementations of the following algorithms in the
Boost Graph Library

1. Poh path 3-coloring with breadth first search;
2. Poh path 3-coloring with faster path finding;
3. Hartman-Skrekovski path 3-list-coloring.

In addition, a writeup describing the correctness and complexity of
the implementation details for each algorithm.

Timeline

December 2015: Began reading papers and thinking about planar
graphs

January 2016: Talk 1

February 2016: Completed a “first draft” implementation of
Poh's algorithm in Boost

March 2016: Talk 2

April - August 2016: Completed Boost implementations of the
Poh and Hartman-Skrekovski algorithms

February 2017 (today!): Talk 3
March 2017: Finalize writeup

April - May 2017: Turn in paperwork and graduate

	Plane graphs
	Graph representations
	Path 3-coloring plane graphs
	Path 3-list-coloring plane graphs

