Fulton 1.8

Posted on November 15, 2017

1.41.* If S is module-finite over R, then S is ring finite over R.

Suppose S is module finite over R. Then S=\{r_1s_1+\ldots+r_ns_n \ | \ r_i\in R\} for some s_1,\ldots,s_n\in S. Thus s=R[s_1,\ldots,s_n].

1.42. Show S=R[X] is ring-finite over R, but not module finite.

Clearly R[X] is ring finite by definition. Observe for any finite set B\subset R[X] there exists a polynomial F\in B of maximum degree n. No polynomial in R[X] of degree n+1 or more is in the submodule generated by B.

1.43.* If L is ring-finite over K (with K,L fields) then L is a finitely generated field extension of K.

Suppose L=K[v_1,\ldots,v_n], with v_1,\ldots,v_n\in L. Then L=K(v_1,\ldots,v_n) and L is a finitely generated field extension of K.

1.44.* Show L=K(X) is a finitely generated field extension of K, but is not ring-finite over K.

It suffices to show L is not ring-finite over K. Suppose L=K[v_1,\ldots,v_n], with v_1,\ldots,v_n\in L. Let b\in K[X] be a common denominator for v_1,\ldots,v_n. Let c\in K[X] such that c\not\mid b. Then 1/c\in L, so 1/c=a_1v_1+\ldots+a_nv_n for some a_1,\ldots,a_n\in K. But b(a_1v_1+\ldots+a_nv_n)\in K[X], while b/c\not\in K[X], a contradiction.

1.45.* Let R be a subring of S, S a subring of T.

(a) If S=\sum Rv_i, T=\sum Sw_j, show T=\sum Rv_iw_j.

Let x\in T. Then x=\sum_{j=1}^m s_jw_j, each s_j\in S. Moreover, s_j=\sum_{i=1}^n r_iv_i, each r_i\in R. Thus x=\sum Rv_iw_j.

(b) If S=R[v_1,\ldots,v_n] and T=S[w_1,\ldots,w_m], then T=R[v_1,\ldots,v_n,w_1,\ldots,w_m].

Note that if F\in T then F=G(w_1,\ldots,w_m) for some G\in S[X_1,\ldots,X_n]. Each coefficient of G is in S=R[v_1,\ldots,v_n]. Evaluating we have F\in R[v_1,\ldots,v_n,w_1,\ldots,w_m]. The converse follows by factoring.

(c) If R,S,T are fields, S=R(v_1,\ldots,v_n), and T=S(w_1,\ldots,w_m), then      T=R(v_1,\ldots,v_n,w_1,\ldots,w_m).

Let K=R(v_1,\ldots,v_n,w_1,\ldots,w_m). The elements v_1,\ldots,v_n,w_,\ldots,w_m are contained in an extension field L of R. Observe that T is a subfield of L containing v_1,\ldots,v_n,w_,\ldots,w_m, thus K\subset T.

Clearly S\subset K. Moreover, w_1,\ldots,w_m\in K. So T\subset K. So T=K.